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Diffusion in liquid alkali metals 

S Ranganathan and K N Pathakt 
Depamnent of Mathematics and Computer Science, Royal Militvy College, Kingston, 
Ontario, Canada K7K SLO 

Receivd 8 September 1993, in final form 15 November 1993 

Abstract. A simple model of atomic motion has been used to calculate fhe velocity auto- 
correlation function, its frequency spec" the asmciated memory function, and the self- 
dimLsion coefficients for liquid alkali metals. There are no adjustable parameters in the model 
and the only inputs required are the interatomic potential and the pair conelarion function. The 
predicted results are in good agreement with recent computer simulation data. The self-diffusion 
coefficients are found to be very close to actual experimental values for all liquid alkaline metals, 
including lithium, and they seem to scale, the scaling being determined by energy and length 
parameters for the interatomic potential and the mass. 

1. Introduction 

One of the basic problems in the theoretical study of the static and dynamic properties of 
liquid metals has been the non-availability of reliable interatomic potentials. However, the 
situation is much better for inert gases and simple metals Lie alkali metals. Lennard-Jones 
potentials and Aziz potentials have been used extensively in the analysis of the properties 
of inert gases. These potentials have simple analytic forms and, in dimensionless units, 
depend only on the distance of separation. Thus they scale as we move ffom one inert gas 
to another. However, scaling features can be present even for complex potential forms. For 
the alkali metals, an effective ion-ion interaction has been obtained to provide reasonable 
descriphons of their properties in the solid phase as well as in the liquid phase [I-91. 
Recently Balucani et a1 [8] have made a very comprehensive computer simulation study 
of liquid alkali metals near their respective melting points using the potential obtained by 
Price er al [2]. An interesting feature of these potentials, as noted by Balucani et al, is 
their smooth scaling behaviour as one moves from one alkali metal to another. In addition, 
they demonstrate that static properties, such as the pair correlation function, and dynamic 
properties, such as the velocity correlation function and peak positions of the longitudinal 
current correlation function, of liquid alkali metals e ~ b i t  scaliig features and are in close 
agreement with available experimental data [IO, 111. 

Even though our understanding of the broad features of  the time correlation functions has 
increased considerably, it is still not possible to calculate the desired correlation function 
readily using microscopic theory. Therefore one resorts to the use of models based on 
physical considerations. A simple model has been proposed by Tankeshwar et ai [I21 to 
calculate the velocity auto-correlation function and related properties. This model, when 
applied to Lennard-Jones (U), Yukawa and Coulomb fluids, has given remarkably good 
results, even at the triple point for w fluids. In this paper we apply this model for liquid alkali 
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metals to calculate the velocity auto-correlation function, its frequency spectrum along with 
the associated memory function and @e self-diffusion coefficient, using, as inputs, only the 
interatomic potential and the corresponding pair correlation function. The predicted results 
are compared with recent computer simulation data. A comparison of our results with those 
of molecular dynamics (m) and experiments indicates an overall good agreement. 

In section 2 we present the necessary theoretical framework of the model and the results 
are given in section 3. 

S Ranganathan and K N Pathak 

2. Theoretical framework 

The normalized velocity auto-correlation function (VACF), denoted by $(t) ,  is defined as 

@(t) = ( u l m u l m / v , 2  (1) 

where vl,(t) is the x component of the velocity of particle 1 at timet. The system consists 
of N identical particles interacting with a pair potential u(i-). uo = (kBT/M)'I2  is the 
thermal speed of the particle. Denoting 

CO 

$(z) = i / e'''@@) dt with z = o + iO+ 
0 

as the Fourier-Laplace transform of the VACP, we have the Mori-Zwanzig representation 

$(z) = -1m -I- P(z)) (2) 

with the memory function f ( z )  = K'(w)+iK"(o). We readily obtain the memory function 
in the time domain from 

with 

K'" = $''(w)/I[@"l2 + [Jr"(o)121 (4) 

where -$'(@) and @"(o) are the sine and cosine transforms of Jr(t). The frequency 
spectrum of the VACF, denoted by f ( w ) ,  is equal to Z$"(o) and the diffusion coefficient D 
is given by ~~ 

D/u,' = f ( 0 ) / 2  = $"(U = 0). (5) 

In this wbrk we calculate the VACF directly and the memory function is then obtained 
later using equations (3) and (4). In order to have a self-contained presentation we briefly 
recall the essential points of the model. The configuration space of an N-particle system 
is considered to consist of a number of cells characterized by some fixed configurations, 
determined by the local minima in the potential energy hyper-surface of the system. The 
particles jump from one cell to another with a jump frequency a.  The effect of the cell 
jump is to rearrange the equilibrium position of the particles. Within the cell, the particles 
execute harmonic oscillations, given by cos(bt), with a fixed frequency b. The waiting time 
distribution for the cell jump is assumed to be given by sech(at). This choice of the waiting 
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ume distribution provides more jumps at smaller times than at larger times. The motion of 
the particles in different cells is assumed to be uncorrelated. With the above assumptions, 
the equilibrium ensemble average in equation (1) can be easily evaluated to yield 

@ ( t )  = sech(ar) cos(bt). (6) 

The details of the calculation and the essential differences between our model and the earlier 
models of Zwanzig [13] and Mohanty [I41 have been discussed in [lo]. The parameters a 
and b are determined using the short-time properties of @(t ) .  We then have 

a = & / 2  b = a / 2  (7) 

where 

and 

with 

In equations (8) and (10) U, = du(r)/dr, u2 = dZu(r)/drZ and the corresponding prime 
quantities denote derivatives with respect to the pnme variable r'. g(r) and g3(T, T') 
are the static pair, and triplet correlation function. For the latter, we use the Kirkwood 
superposition approximation in the evaluation of these integrals. A and B are essentially 
the coefficients of t2 and t4 in the time expansion of the VACF. 

It is easy to obtain analytical expressions for @'(CO) and v(o) using equation (6). They 
are given by 

$"(U) = (n/4a)[sech(z/Zu)(o + b) + sech(x/2a)(o - b)]. (12) 

Thus we have a simple expression for the self-diffusion coefficient D given by 

D = (rr/Zu)u~sech(rrb/2a). (13) 
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Figure 1. The PST interatomic potential U* = u(r) /e  and its first three derivatives U:, U; and U: 

are plottcd in (a), (b), (e )  and (d). respectively, as a function of T* = rfu. The fuM C U N ~  is for 
NP and the broken curve is for Cs. The corresponding culyes for K and Rb lie between those 
of Na and Cs. The densities correspond to a reduced density of n* = 0.895, at their melting 
tempmatures. 
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Figure 1. (Continued) 

3. Results and discussion 

In order to obtain numerical results, we only need values for A and E ,  which are easily 
obtained once the potential and its corresponding g(r )  is known. For liquid alkali metals, 
we have used the potentials of Price, Singwi and Tosi [2] (PST) and the corresponding 
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g ( r )  obtained by Balucani et al by computer simulation [SI. It should be noted that PST 
potentials are not me potentials, but.only effective pair potentials. They depend not only 
on the distance of separation, but also on other factors such as the density (and hence the 
temperature). The many-body effects in PST potentials enter through the parameters of the 
potential and we refer the reader to their paper [Z] for further details. 

In figure 1 we have plotted U* = U(?-)/€ and its first three derivatives as a function 
of r* = r/a where E is the potential well depth and U is the position of the first zero 
of the potential. For purposes of clarity, only curves for sodium (Na) (full curve) and 
caesium (Cs) broken curve) are presented in figures l(a)-l(d),  The corresponding curves 
for potassium (K) and rubidium (Rb) lie between these two curves. The scaling feature of 
the potential is clearly seen in figure l (a) .  It can be noted from figures l(b) to l ( d )  that 
the scaling behaviour is preserved to a very good approximation in the derivatives also, 
except for some deviations around r Y U. The deviations increase with the order of the 
derivative. The deviations could be partly due to the numerical procedure used and partly 
due to small differences in the potentials themselves, which get amplified in the derivatives. 
These deviations may have some effect on the universal behaviour of dynamical correlation 
functions, especially those involving many-particle dynamics. However, these deviations do 
not have a significant effect on our results as our model uses only the first two derivatives 
of the potential. 

The numerical results for A, which is also the square of the Einstein frequency, and B ,  
along with some of the parameters for liquid alkali metals are presented in table 1 .  It is seen 
that A s 2  and B t 4  are practically the same for rubidium and caesium, where rZ  = mu2/€. 
The maximum difference is less than 5% for A s Z  and less than 10% for Br4. It should 
be noted that there is a difference of about 8% in their T" = k ~ T / e  and so the differences 
in the coefficients A s Z  and B t 4  may be due to slight differences in their T* and in the 
derivatives of the potentials. Keeping these points in mind, one is tempted to conclude that 
A s 2  and B s 4  do scale. Since A and B are related to the short-time expansion of the VACF, 
the scaling of these coefficients implies scaling of the VACF, at least for short times. 

Table 1. Physical parameters and diffusion coefficients D (in units of cm2 s-l) for liquid 
alkali metals. The calculated values are the prediction of our model. DMD and Dmpt are 
molecular dynamics and experimental values. 

Metal E (K) d (A) n (A-3) T (K) Arz Br' D,I DMD Dmpr 

Li 567.1 2.728 0.0441 454 - - 6.7 - 6.14.8 
NZI 445.6 3.328 0.0229 376 186.5 77890 4.41 4.06 4.06-4.35 
K 421.4 4.115 0.0128 343 183.6 73900 3.78 3.58 , 3.52-3.72 
Rb 402.2 4.408 0.0104 312 178.4 69870 2.60 2.40 2.60 
c s  385.5 4.761 0.0083 302 178.3 69980 2.22 2.11 2.16 

. .  

Using the parameters for rubidium, we have calculated the VACF, f (U), the real and the 
imaginary pans of the memory function in frequency space and the memory function in the 
time domain. The VACF is represented in figure 2 as the function t* = t / t  by the full curve, 
while the computer simulation data are represented by the broken curve. Our calculated 
result reproduces all the well known features of the VACF, such as a negative minimum, 
a feature also present in Lennard-Jones liquids near the triple point. A distinctive feature 
of the VACF in liquid metals i s  the oscillations, which are not reproduced very well by our 
model. This is to be expected, as it is in this region of the time domain that the model does 
not correctly incorporate certain physical effects like mode couplings. However the areas 
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under the two curves, which are related to the diffusion coefficient, are very close. In figure 
3 we plot the reduced frequency spectrum f * ( w )  = f ( w )  r/W2 as a full curve. The broken 
curve is from the computer simulation data. The important features of the MD data are the 
appearance of a peak at CO* = wr N 10 and the flatness of the spectrum from w* N 11 to 
w* E 14. Similar features have been seen in the MD data on W fluids [U] at the triple point 
and on liquid caesium using a different potential [16]. The flat region is probably indicative 
of the onset of a new relaxation mechanism, which is predicted by mode coupling theory in 
the strong coupling limit for the glassy state [17]. The frequency spectrum obtained from 
the model only has a peak at w* 2 11, which is somewhat shifted towards the low-frequency 
side from the centre of the broad spect” obmned from computer simulation data. The 
MD data and the model data are both shifted toward the small-o side from the Einstein 
frequency given by wE = 14.4. Although there are discrepancies between the two spectra, 
the model results are satisfactory. 

, ~~ 

.~ ,’ -0.2 t “‘L .. ,* 

-0.4 
0 0.2 0 . 1  D . 6  . 0.8 1 1.2 

t* 

Figure 2. The velocity auto-correlation function as a function oft’ = t / z .  The model results 
and computer simulation dam are shown as a full and broken curve. respectively. 

A quantity of theoretical interest is the memory functlon of the VACF. Although our 
model does not require a memory function in its formulation, we have extracted it to see 
the extent to which it includes the actual memory effects and for comparison with other 
theoretical calculations. The real and the imaginary parts, K’(w)/r and K”(w)/r are plotted 
in figure 4 as full curves. The computer simulation results are shown as broken curves. The 
top poruon (positive y-axis) of the figure denotes the imaginary part. It is interestlng to 
note that OUT simple model is in semi-quantitative agreement with the simulation data. The 
memory function in time space, calculated from equations (3) and (4), is plotted in figure 5. 
The slight differences for t* < 0.1 could be partly due to the use of the superposition 
approximation in our calculations. A study of this figure indicates that the model memory 
function has a tendency to show a minimum around t* N 0.2 but the effect is small. A 
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Figure 3. Tbe reduced frequency specmm vexsus o* =oz. The curves are as in figure 2. 

comparison with the mode coupling calculation of Balucani eta1 [8] shows that the present 
model includes more than the binary collision effects estimated by them. Further, even 
the mode coupling calculations do not account for the minimum seen in the MD memory 
function. Although there are differences between the memory function obtained from the 
computer simulation data of the VACF and that of the model, they are within a respectable 
range. 

It is clear from figures 2 to 5 that, while there is an overall good agreement between ow 
model results and the computer simulation results, there are small deviations even at short 
times, and thus our model does not reproduce all of the short-time responses exactly. We 
believe that these deviations could partly be attributed to the details of the binary collisions. 
Especially for a continuous potential, like the PST potential, these effects cannot be modelled 
exactly and our model accounts for these collisions only in some average way. 

The calculated diffusion coefficient from equation (5) is given in table 1 along with 
molecular dynamics [SI and experimental values [18,19]. The dimensionless diffusion 
coefficients D* = D r / d  are found to be 0.033, 0.031, 0.030 and 0.030 for the liquid 
metals Na, K, Rb and Cs, respectively. Thus only for liquid sodium does there appear to 
be a slight departure from a universal value. Taking the universal value for D* to be 0.030, 
we can predict the diffusion coefficient of liquid lithium, assuming T' = 0.8 and n* = n 
u3 = 0.895, and the result is presented in table 1. It is seen that predicted results are in 
remarkably good agreement with both the MD data and experimental results for all the liquid 
alkali metals. 

In summary, we have used a simple model of atomic motion in liquids to calculate the 
velocity auto-correlation function, its frequency spectrum, the associated memory function 
and the self-diffusion coefficients of liquid alkali metals at their melting points. The 
interatomic potential of Price, Singwi and Tosi, and the corresponding pair correlation 
function have been used to obtain the two parameters, a and b, introduced in the model. 
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Figure 4. The real part K'(o) and the imaginary pat  K"(o) of the reduced memory function 
vetsus U* with curves as in figure 3. The real part is plotted in the lower portion. 

0 0.2 0 . 4  0.6 0.8 1 1.2 
t* 

Figure 5. The memory function, normalized to uNty at t = 0, is plotted as a function of the 
reduced time t' with the cunies as in figure 2. 

The predicted results are compared with recent MD data and found to be in overall 
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good agreement. The self-diffision coefficients seem to scale nicely when expressed in 
dimiensionless units determined by their m a s  and the E ,  U parameters of the interatomic 
potential. It is gratifying to note that a very simple model predicts values for the self- 
diffusion coefficient for all liquid alkali metals, including lithium, which are in very good 
agreement with experimental results. The model not only provides acceptable values for the 
diffusion coefficient but also reproduces essential features of atomic motion in liquid alkali 
metals. Similar conclusions were anived at when this model was applied to Lennard-Jones, 
Yukawa and Coulomb fluids [12]. Therefore, it is hoped that this model would be useful in 
estimating the self-diffusion coefficients of other systems. 

S Ranganathan and K N Pathak 
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